Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.573
Filtrar
1.
Sci Rep ; 14(1): 8263, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594333

RESUMO

Oocytes of both vertebrates and invertebrates often contain an intricate organelle assemblage, termed the Balbiani body (Bb). It has previously been suggested that this assemblage is involved in the delivery of organelles and macromolecules to the germ plasm, formation of oocyte reserve materials, and transfer of mitochondria to the next generation. To gain further insight into the function of the Bb, we performed a series of analyses and experiments, including computer-aided 3-dimensional reconstructions, detection of DNA (mtDNA) synthesis as well as immunolocalization studies. We showed that in orthopteran Meconema meridionale, the Bb comprises a network of mitochondria and perinuclear nuage aggregations. As oogenesis progresses, the network expands filling almost entire ooplasm, then partitions into several smaller entities, termed micro-networks, and ultimately into individual mitochondria. As in somatic cells, this process involves microfilaments and elements of endoplasmic reticulum. We showed also that at least some of the individual mitochondria are surrounded by phagophores and eliminated via mitophagy. These findings support the idea that the Bb is implicated in the multiplication and selective elimination of (defective) mitochondria and therefore may participate in the transfer of undamaged (healthy) mitochondria to the next generation.


Assuntos
Oócitos , Ortópteros , Animais , Oócitos/metabolismo , Oogênese/genética , Mitocôndrias/genética , Insetos , Retículo Endoplasmático
2.
BMC Genomics ; 25(1): 335, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38580918

RESUMO

BACKGROUND: Mammalian follicle development is characterized by extensive changes in morphology, endocrine responsiveness, and function, providing the optimum environment for oocyte growth, development, and resumption of meiosis. In cattle, the first signs of transcription activation in the oocyte are observed in the secondary follicle, later than during mouse and human oogenesis. While many studies have generated extensive datasets characterizing gene expression in bovine oocytes, they are mostly limited to the analysis of fully grown and matured oocytes. The aim of the present study was to apply single-cell RNA sequencing to interrogate the transcriptome of the growing bovine oocyte from the secondary follicle stage through to the mid-antral follicle stage. RESULTS: Single-cell RNA-seq libraries were generated from oocytes of known diameters (< 60 to > 120 µm), and datasets were binned into non-overlapping size groups for downstream analysis. Combining the results of weighted gene co-expression network and Trendy analyses, and differently expressed genes (DEGs) between size groups, we identified a decrease in oxidative phosphorylation and an increase in maternal -genes and transcription regulators across the bovine oocyte growth phase. In addition, around 5,000 genes did not change in expression, revealing a cohort of stable genes. An interesting switch in gene expression profile was noted in oocytes greater than 100 µm in diameter, when the expression of genes related to cytoplasmic activities was replaced by genes related to nuclear activities (e.g., chromosome segregation). The highest number of DEGs were detected in the comparison of oocytes 100-109 versus 110-119 µm in diameter, revealing a profound change in the molecular profile of oocytes at the end of their growth phase. CONCLUSIONS: The current study provides a unique dataset of the key genes and pathways characteristic of each stage of oocyte development, contributing an important resource for a greater understanding of bovine oogenesis.


Assuntos
Oogênese , Transcriptoma , Feminino , Bovinos , Animais , Humanos , Camundongos , Oogênese/genética , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Proliferação de Células , Mamíferos/genética
3.
Gen Comp Endocrinol ; 351: 114479, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431208

RESUMO

Functions of vitellogenins have been in the limelight of fish reproductive physiology research for decades. The Vtg system of acanthomorph teleosts consists of two complete forms of Vtgs (VtgAa and VtgAb) and an incomplete form, VtgC. Insufficient uptake and processing of Vtgs and their yolk proteins lead to inadequate oocyte hydration ensuing failure in acquisition of egg buoyancy and early developmental deficiencies. This review presents a summary of our studies on utilization of multiple Vtgs in species with different egg buoyancy characteristics, as examples. Studies of moronids revealed limited degradation of all three forms of lipovitellin heavy chain derived from their three respective forms of Vtg, by which they contribute to the free amino acid pool driving oocyte hydration during oocyte maturation. In later studies, CRISPR/Cas9 was employed to invalidate zebrafish type I, type II and type III Vtgs, which are orthologs of acanthamorph VtgAa, VtgAb and VtgC, respectively. Results revealed type I Vtg to have essential developmental and nutritional functions in both late embryos and larvae. Genomic disturbance of type II Vtg led to high mortalities during the first 24 h of embryonic development. Despite being a minor form of Vtg in zebrafish and most other species, type III Vtg was also found to contribute essentially to the developmental potential of zebrafish zygotes and early embryos. Apart from severe effects on progeny survival, these studies also disclosed previously unreported regulatory effects of Vtgs on fecundity and fertility, and on embryo hatching. We recently utilized parallel reactions monitoring based liquid chromatography tandem mass spectrometry to assess the processing and utilization of lipovitellins derived from different forms of Vtg in Atlantic halibut and European plaice. Results showed the Lv heavy chain of VtgAa (LvHAa) to be consumed during oocyte maturation and the Lv light chain of VtgAb (LvLAb) to be utilized specifically during late larval stages, while all remaining YPs (LvLAa, LvHAb, LvHC, and LvLC) were utilized during or after hatching up until first feeding in halibut. In plaice, all YPs except LvHAa, which similarly to halibut supports oocyte maturation, are utilized from late embryo to late larval development up until first feeding. The collective findings from these studies affirm substantial disparity in modes of utilization of different types of Vtgs among fish species with various egg buoyancy characteristics, and they reveal previously unknown regulatory functions of Vtgs in maintenance of reproductive assets such as maternal fecundity and fertility, and in embryonic hatching. Despite the progress that has been made over the past two decades by examining multiple Vtgs and their functions, a higher complexity of these systems with much greater diversity between species in modes of Vtg utilization is now evident. Further research is needed to reveal novel ways each species has evolved to utilize these complex multiple Vtg systems and to discover unifying principles for this evolution in fishes of diverse lineages, habitats and life history characteristics.


Assuntos
Perciformes , Vitelogeninas , Animais , Vitelogeninas/metabolismo , Peixe-Zebra/metabolismo , Peixes/metabolismo , Oócitos/metabolismo , Oogênese/genética , Perciformes/metabolismo
4.
Reproduction ; 167(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471304

RESUMO

In brief: HSP90AA1 is a ubiquitous molecular chaperone that can resist cellular stress, such as oxidative stress and apoptosis, and mediate the efficacy and protein folding of normal cells during heat stress, as well as many other functions. This study further reveals the role of HSP90AA1 in bovine oocyte maturation and early embryonic development. Abstract: HSP90AA1, a highly abundant and ubiquitous molecular chaperone, plays important roles in various cellular processes including cell cycle control, cell survival, and hormone signaling pathways. In this study, we investigated the functions of HSP90AA1 in bovine oocyte and early embryo development. We found that HSP90AA1 was expressed at all stages of development, but was mainly located in the cytoplasm, with a small amount distributed in the nucleus. We then evaluated the effect of HSP90AA1 on the in vitro maturation of bovine oocytes using tanespimycin (17-AAG), a highly selective inhibitor of HSP90AA1. The results showed that inhibition of HSP90AA1 decreased nuclear and cytoplasmic maturation of oocytes, disrupted spindle assembly and chromosome distribution, significantly increased acetylation levels of α-tubulin in oocytes and affected epigenetic modifications (H3K27me3 and H3K27ac). In addition, H3K9me3 was increased at various stages during early embryo development. Finally, the impact of HSP90AA1 on early embryo development was explored. The results showed that inhibition of HSP90AA1 reduced the cleavage and blastocyst formation rates, while increasing the fragmentation rate and decreasing blastocyst quality. In conclusion, HSP90AA1 plays a crucial role in bovine oocyte maturation as well as early embryo development.


Assuntos
Oócitos , Oogênese , Bovinos , Animais , Oogênese/genética , Oócitos/metabolismo , Desenvolvimento Embrionário , Blastocisto/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/farmacologia , Técnicas de Maturação in Vitro de Oócitos/métodos
5.
Biochem Soc Trans ; 52(2): 861-871, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38477334

RESUMO

A large number of mRNAs of maternal origin are produced during oogenesis and deposited in the oocyte. Since transcription stops at the onset of meiosis during oogenesis and does not resume until later in embryogenesis, maternal mRNAs are the only templates for protein synthesis during this period. To ensure that a protein is made in the right place at the right time, the translation of maternal mRNAs must be activated at a specific stage of development. Here we summarize our current understanding of the sophisticated mechanisms that contribute to the temporal repression of maternal mRNAs, termed maternal mRNA dormancy. We discuss mechanisms at the level of the RNA itself, such as the regulation of polyadenine tail length and RNA modifications, as well as at the level of RNA-binding proteins, which often block the assembly of translation initiation complexes at the 5' end of an mRNA or recruit mRNAs to specific subcellular compartments. We also review microRNAs and other mechanisms that contribute to repressing translation, such as ribosome dormancy. Importantly, the mechanisms responsible for mRNA dormancy during the oocyte-to-embryo transition are also relevant to cellular quiescence in other biological contexts.


Assuntos
Oócitos , Oogênese , Animais , Humanos , Oócitos/metabolismo , Oogênese/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro Estocado/metabolismo , RNA Mensageiro Estocado/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Biossíntese de Proteínas , Regulação da Expressão Gênica no Desenvolvimento , Feminino , Desenvolvimento Embrionário/genética
6.
Genetics ; 226(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38345426

RESUMO

In the fruit fly Drosophila melanogaster, two cells in a cyst of 16 interconnected cells have the potential to become the oocyte, but only one of these will assume an oocyte fate as the cysts transition through regions 2a and 2b of the germarium. The mechanism of specification depends on a polarized microtubule network, a dynein dependent Egl:BicD mRNA cargo complex, a special membranous structure called the fusome and its associated proteins, and the translational regulator orb. In this work, we have investigated the role of orb and the fusome in oocyte specification. We show here that specification is a stepwise process. Initially, orb mRNAs accumulate in the two pro-oocytes in close association with the fusome. This association is accompanied by the activation of the orb autoregulatory loop, generating high levels of Orb. Subsequently, orb mRNAs become enriched in only one of the pro-oocytes, the presumptive oocyte, and this is followed, with a delay, by Orb localization to the oocyte. We find that fusome association of orb mRNAs is essential for oocyte specification in the germarium, is mediated by the orb 3' UTR, and requires Orb protein. We also show that the microtubule minus end binding protein Patronin functions downstream of orb in oocyte specification. Finally, in contrast to a previously proposed model for oocyte selection, we find that the choice of which pro-oocyte becomes the oocyte does not seem to be predetermined by the amount of fusome material in these two cells, but instead depends upon a competition for orb gene products.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Proteínas de Drosophila/metabolismo , Oócitos/metabolismo , Oogênese/genética
7.
Genetics ; 226(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38302115

RESUMO

Endocycling cells grow and repeatedly duplicate their genome without dividing. Cells switch from mitotic cycles to endocycles in response to developmental signals during the growth of specific tissues in a wide range of organisms. The purpose of switching to endocycles, however, remains unclear in many tissues. Additionally, cells can switch to endocycles in response to conditional signals, which can have beneficial or pathological effects on tissues. However, the impact of these unscheduled endocycles on development is underexplored. Here, we use Drosophila ovarian somatic follicle cells as a model to examine the impact of unscheduled endocycles on tissue growth and function. Follicle cells normally switch to endocycles at mid-oogenesis. Inducing follicle cells to prematurely switch to endocycles resulted in the lethality of the resulting embryos. Analysis of ovaries with premature follicle cell endocycles revealed aberrant follicular epithelial structure and pleiotropic defects in oocyte growth, developmental gene amplification, and the migration of a special set of follicle cells known as border cells. Overall, these findings reveal how unscheduled endocycles can disrupt tissue growth and function to cause aberrant development.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Feminino , Drosophila/genética , Proteínas de Drosophila/genética , Oogênese/genética , Ciclo Celular/genética , Folículo Ovariano , Drosophila melanogaster/genética
8.
Methods Mol Biol ; 2770: 203-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351456

RESUMO

Germ cells as the means for the transmission of genetic information between generations have been a hot topic of research for decades. The analysis of the transcriptomes, that is of the RNA transcripts produced by the genotype at a given time, of germ cells and the surrounding somatic cells, is essential to unravel the cellular and molecular processes regulating gametogenesis. However, the asynchronized differentiation of germ cells and high cellular heterogeneity in the developing ovary or testis represent two unsurmountable challenges for delineating the transcription regulation mechanism of germ cells using traditional bulk RNA sequencing. By performing single-cell RNA sequencing (scRNA-seq), it is now possible to dissect the transcriptome of germ cell development at single-cell resolution, and apply powerful bioinformatics methods to translate raw sequencing data into meaningful information. Here, using the 10× Genomic platform and the most widely cited bioinformatics tools, we describe how to analyze early female germ cell development using scRNA-seq data generated from mouse E11.5 to E14.5 ovaries. This pipeline will provide a guide for exploring the processes of early germ cell development at single-cell resolution.


Assuntos
Análise da Expressão Gênica de Célula Única , Transcriptoma , Masculino , Feminino , Animais , Camundongos , Análise de Sequência de RNA/métodos , Oogênese/genética , Análise de Dados , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos
9.
Nat Commun ; 15(1): 1627, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388656

RESUMO

The number of embryonic primordial germ cells in Drosophila is determined by the quantity of germ plasm, whose assembly starts in the posterior region of the oocyte during oogenesis. Here, we report that extending JAK-STAT activity in the posterior somatic follicular epithelium leads to an excess of primordial germ cells in the future embryo. We show that JAK-STAT signaling is necessary for the differentiation of approximately 20 specialized follicle cells maintaining tight contact with the oocyte. These cells define, in the underlying posterior oocyte cortex, the anchoring of the germ cell determinant oskar mRNA. We reveal that the apical surface of these posterior anchoring cells extends long filopodia penetrating the oocyte. We identify two JAK-STAT targets in these cells that are each sufficient to extend the zone of contact with the oocyte, thereby leading to production of extra primordial germ cells. JAK-STAT signaling thus determines a fixed number of posterior anchoring cells required for anterior-posterior oocyte polarity and for the development of the future germline.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Oócitos/metabolismo , Oogênese/genética , Células Germinativas/metabolismo , Polaridade Celular , Drosophila melanogaster/metabolismo
10.
J Assist Reprod Genet ; 41(2): 311-322, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177974

RESUMO

Women undergoing controlled ovarian hyperstimulation prior to in vitro fertilization (IVF) are treated using various protocols to induce multiple follicular growths. Complete failure of all oocytes to mature during IVF cycles is rare; however, it is a known cause of primary female infertility. Recently, pathogenic variations in a few genes have been identified in women with oocyte maturation defects; however, the underlying genetic causes remain largely unknown.This study included a Turkish family comprising three sisters with recurring oocyte maturation arrest at the germinal vesicle stage after multiple ovarian stimulations. Exome sequencing revealed a homozygous missense variant (c.1037C>T, p.Ala346Val) in the EPAB gene (also known as PABPC1L) in all three affected sisters, which was either absent or heterozygous in the unaffected family members. Functional experiments confirming the pathogenicity of the variant were performed by transfecting HEK293T cells and demonstrated the instability and increased rate of proteolysis of the mutated PABPC1L/EPAB protein. The identified variant, located in the well-conserved fourth RNA recognition motif (RRM4), in silico 3D modelling suggested changes in the physical properties of the pathogenic variant of PABPC1L/EPAB. Our findings validate PABPC1L/EPAB as an essential genetic contributor to the oocyte maturation process in humans and have direct implications for the genetic counselling of patients and their family members.


Assuntos
Infertilidade Feminina , Feminino , Humanos , Núcleo Celular , Células HEK293 , Técnicas de Maturação in Vitro de Oócitos , Infertilidade Feminina/terapia , Oócitos/metabolismo , Oogênese/genética
11.
Zool Res ; 45(1): 176-188, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38199972

RESUMO

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly docosahexaenoic acid (22:6n-3, DHA), play crucial roles in the reproductive health of vertebrates, including humans. Nevertheless, the underlying mechanism related to this phenomenon remains largely unknown. In this study, we employed two zebrafish genetic models, i.e., elovl2 -/- mutant as an endogenous DHA-deficient model and fat1 (omega-3 desaturase encoding gene) transgenic zebrafish as an endogenous DHA-rich model, to investigate the effects of DHA on oocyte maturation and quality. Results show that the elovl2 -/- mutants had much lower fecundity and poorer oocyte quality than the wild-type controls, while the fat1 zebrafish had higher fecundity and better oocyte quality than wild-type controls. DHA deficiency in elovl2 -/- embryos led to defects in egg activation, poor microtubule stability, and reduced pregnenolone levels. Further study revealed that DHA promoted pregnenolone synthesis by enhancing transcription of cyp11a1, which encodes the cholesterol side-chain cleavage enzyme, thereby stabilizing microtubule assembly during oogenesis. In turn, the hypothalamic-pituitary-gonadal axis was enhanced by DHA. In conclusion, using two unique genetic models, our findings demonstrate that endogenously synthesized DHA promotes oocyte maturation and quality by promoting pregnenolone production via transcriptional regulation of cyp11a1.


Assuntos
Ácidos Docosa-Hexaenoicos , Peixe-Zebra , Animais , Humanos , Enzima de Clivagem da Cadeia Lateral do Colesterol , Oogênese/genética , Oócitos
12.
Trends Genet ; 40(3): 238-249, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38262796

RESUMO

Maternal mRNAs accumulate during egg growth and must be judiciously degraded or translated to ensure successful development of mammalian embryos. In this review we integrate recent investigations into pathways controlling rapid degradation of maternal mRNAs during the maternal-to-zygotic transition. Degradation is not indiscriminate, and some mRNAs are selectively protected and rapidly translated after fertilization for reprogramming the zygotic genome during early embryogenesis. Oocyte specific cofactors and pathways have been illustrated to control different futures of maternal mRNAs. We discuss mechanisms that control the fate of maternal mRNAs during late oogenesis and after fertilization. Issues to be resolved in current maternal mRNA research are described, and future research directions are proposed.


Assuntos
Desenvolvimento Embrionário , RNA Mensageiro Estocado , Animais , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Desenvolvimento Embrionário/genética , Oócitos , Oogênese/genética , Zigoto , Regulação da Expressão Gênica no Desenvolvimento/genética , Mamíferos/genética
13.
Mar Biotechnol (NY) ; 26(1): 125-135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217752

RESUMO

The fecundity of triploid female Crassostrea gigas exhibited significant variation and was lower compared to diploid individuals. Previous studies categorized mature stage triploid female C. gigas into two groups: female α, characterized by a high number of oocytes, and female ß, displaying few or no oocytes. To investigate the molecular mechanisms underlying irregular oogenesis and fecundity differences in triploid C. gigas, we performed a comparative analysis of gonad transcriptomes at different stages of gonadal development, including female α, female ß, and diploids. During early oogenesis, functional enrichment analysis between female diploids and putative female ß triploids revealed differently expressed genes (DEGs) in the ribosome and ribosome biogenesis pathways. Expression levels of DEGs in these pathways were significantly decreased in the putative female ß triploid, suggesting a potential role of reduced ribosome levels in obstructing triploid oogenesis. Moreover, to identify regulatory pathways in gonad development, female oysters at the early and mature stages were compared. The DNA repair and recombination proteins pathways were enriched in female diploids and female α triploids but absent in female ß triploids. Overall, we propose that decreased ribosome biogenesis in female triploids hinders the differentiation of germ stem cells, leading to the formation of a large number of abnormal germ cells and ultimately resulting in reduced fecundity. The variation in fertility among triploids appeared to be related to the degree of DNA damage repair during female gonad development. This study offers valuable insights into the oogenesis process in female triploid C. gigas.


Assuntos
Crassostrea , Triploidia , Animais , Feminino , Humanos , Crassostrea/genética , Transcriptoma , Oogênese/genética , Perfilação da Expressão Gênica , Ribossomos/genética
14.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255985

RESUMO

The development of the ovarian antral follicle is a complex, highly regulated process. Oocytes orchestrate and coordinate the development of mammalian ovarian follicles, and the rate of follicular development is governed by a developmental program intrinsic to the oocyte. Characterizing oocyte signatures during this dynamic process is critical for understanding oocyte maturation and follicular development. Although the transcriptional signature of sheep oocytes matured in vitro and preovulatory oocytes have been previously described, the transcriptional changes of oocytes in antral follicles have not. Here, we used single-cell transcriptomics (SmartSeq2) to characterize sheep oocytes from small, medium, and large antral follicles. We characterized the transcriptomic landscape of sheep oocytes during antral follicle development, identifying unique features in the transcriptional atlas, stage-specific molecular signatures, oocyte-secreted factors, and transcription factor networks. Notably, we identified the specific expression of 222 genes in the LO, 8 and 6 genes that were stage-specific in the MO and SO, respectively. We also elucidated signaling pathways in each antral follicle size that may reflect oocyte quality and in vitro maturation competency. Additionally, we discovered key biological processes that drive the transition from small to large antral follicles, revealing hub genes involved in follicle recruitment and selection. Thus, our work provides a comprehensive characterization of the single-oocyte transcriptome, filling a gap in the mapping of the molecular landscape of sheep oogenesis. We also provide key insights into the transcriptional regulation of the critical sizes of antral follicular development, which is essential for understanding how the oocyte orchestrates follicular development.


Assuntos
Carbamatos , Oócitos , Compostos Organometálicos , Análise da Expressão Gênica de Célula Única , Feminino , Animais , Ovinos , Folículo Ovariano , Oogênese/genética , Ovário , Mamíferos
15.
Int J Biol Macromol ; 260(Pt 2): 129632, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253139

RESUMO

Oogenesis is a complex process regulated by precise coordination of multiple factors, including maternal genes. Zygote arrest 1 (zar1) has been identified as an ovary-specific maternal gene that is vital for oocyte-to-embryo transition and oogenesis in mouse and zebrafish. However, its function in other species remains to be elucidated. In the present study, zar1 was identified with conserved C-terminal zinc finger domains in Nile tilapia. zar1 was highly expressed in the ovary and specifically expressed in phase I and II oocytes. Disruption of zar1 led to the failed transition from oogonia to phase I oocytes, with somatic cell apoptosis. Down-regulation and failed polyadenylation of figla, gdf9, bmp15 and wee2 mRNAs were observed in the ovaries of zar1-/- fish. Cpeb1, a gene essential for polyadenylation that interacts with Zar1, was down-regulated in zar1-/- fish. Moreover, decreased levels of serum estrogen and increased levels of androgen were observed in zar1-/- fish. Taken together, zar1 seems to be essential for tilapia oogenesis by regulating polyadenylation and estrogen synthesis. Our study shows that Zar1 has different molecular functions during gonadal development by the similar signaling pathway in different species.


Assuntos
Ciclídeos , Tilápia , Feminino , Animais , Camundongos , Tilápia/genética , Tilápia/metabolismo , Peixe-Zebra/metabolismo , Ciclídeos/genética , Ciclídeos/metabolismo , Poliadenilação , Proteínas do Ovo/metabolismo , Oogênese/genética , Estrogênios , Fatores de Transcrição/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética
16.
Genome Res ; 34(1): 57-69, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38164610

RESUMO

Chromatin organization in the C. elegans germline is tightly regulated and critical for germ cell differentiation. Although certain germline epigenetic regulatory mechanisms have been identified, how they influence chromatin structure and ultimately gene expression remains unclear, in part because most genomic studies have focused on data collected from intact worms comprising both somatic and germline tissues. We therefore analyzed histone modification and chromatin accessibility data from isolated germ nuclei representing undifferentiated proliferating and meiosis I populations to define chromatin states. We correlated these states with overall transcript abundance, spatiotemporal expression patterns, and the function of small RNA pathways. Because the essential role of the germline is to transmit genetic information and establish gene expression in the early embryo, we compared epigenetic and transcriptomic profiles from undifferentiated germ cells to those of embryos to define the epigenetic changes during this developmental transition. The active histone modification H3K4me3 shows particularly dynamic remodeling as germ cells differentiate into oocytes, which suggests a mechanism for establishing early transcription of essential genes during zygotic genome activation. This analysis highlights the dynamism of the chromatin landscape across developmental transitions and provides a resource for future investigation into epigenetic regulatory mechanisms in germ cells.


Assuntos
Caenorhabditis elegans , Cromatina , Histonas , Animais , Cromatina/genética , Cromatina/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Oogênese/genética , Células Germinativas , Regulação da Expressão Gênica no Desenvolvimento
17.
Genetics ; 226(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38000906

RESUMO

Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.


Assuntos
Oócitos , Oogênese , Animais , Feminino , Oogênese/genética , Oócitos/fisiologia , Ovulação/fisiologia , Folículo Ovariano , Drosophila , Mamíferos
18.
Theriogenology ; 215: 1-9, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995439

RESUMO

Ongoing progress in mRNA-Sequencing technologies has significantly contributed to the refinement of assisted reproductive technologies. However, the prior investigations have predominantly concentrated on alterations in overall gene expression levels, thereby leaving a considerable gap in our understanding of the influence of transcript isoform expression on fundamental cellular mechanisms of oocytes. Given the efficacy of differential transcript usage (DTU) analysis to address such knowledge, we conducted comprehensive DTU analysis utilizing mRNA-Seq datasets of germinal vesicle (GV) and metaphase II (MII) oocytes across six mammalian species from the SRA database, including cow, donkey, horse, human, mouse, and pig. To further illuminate the roles of these genes, we also conducted a rigorous Gene Ontology (GO) term enrichment analysis. While the DTU analysis of each species exhibited several genes with alterations in their transcript isoform usage, referred to as DTU genes, this study focused on only ten cross-species DTU genes sharing among a minimum of five distinct species (FDR≤0.05). These cross-species DTU genes were as follows: ABCF1, CDC6, CFAP36, CNOT10, DNM3, IWS1, NBN, NDEL1, RAD50 and ZCCHC17. GO term enrichment analysis unveiled the alignment of these cross-species DTU gene functions with RNA and cell-cycle control mechanisms across diverse mammalian species, thereby suggesting their vital roles during oocyte maturation. Further exploration of the transcript isoforms of these genes hence bore the potential to uncover novel transcript isoform markers for future reproductive technologies in both human and animal contexts.


Assuntos
Oócitos , Oogênese , Bovinos , Feminino , Humanos , Suínos , Animais , Cavalos/genética , Camundongos , Metáfase , Oócitos/metabolismo , Oogênese/genética , Isoformas de Proteínas/genética , Mamíferos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo
19.
Dev Growth Differ ; 66(1): 66-74, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37945353

RESUMO

We previously identified Xenopus tudor domain containing 6/Xenopus tudor repeat (Xtdrd6/Xtr), which was exclusively expressed in the germ cells of adult Xenopus laevis. Western blot analysis showed that the XTdrd6/Xtr protein was translated in St. I/II oocytes and persisted as a maternal factor until the tailbud stage. XTdrd6/Xtr has been reported to be essential for the translation of maternal mRNA involved in oocyte meiosis. In the present study, we examined the distribution of the XTdrd6/Xtr protein during oogenesis and early development, to predict the time point of its action during development. First, we showed that XTdrd6/Xtr is localized to germinal granules in the germplasm by electron microscopy. XTdrd6/Xtr was found to be localized to the origin of the germplasm, the mitochondrial cloud of St. I oocytes, during oogenesis. Notably, XTdrd6/Xtr was also found to be localized around the nuclear membrane of St. I oocytes. This suggests that XTdrd6/Xtr may immediately interact with some mRNAs that emerge from the nucleus and translocate to the mitochondrial cloud. XTdrd6/Xtr was also detected in primordial germ cells and germ cells throughout development. Using transgenic Xenopus expressing XTdrd6/Xtr with a C-terminal FLAG tag produced by homology-directed repair, we found that the zygotic translation of the XTdrd6/Xtr protein began at St. 47/48. As germ cells are surrounded by gonadal somatic cells and are considered to enter a new differentiation stage at this phase, the newly synthesized XTdrd6/Xtr protein may regulate the translation of mRNAs involved in the new steps of germ cell differentiation.


Assuntos
Células Germinativas , Gônadas , Mesoderma , Proteínas de Xenopus , Animais , Células Germinativas/metabolismo , Gônadas/embriologia , Oócitos , Oogênese/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Xenopus laevis/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
20.
J Genet Genomics ; 51(1): 48-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37481122

RESUMO

The generation of mature and healthy oocytes is the most critical event in the entire female reproductive process, and the mechanisms regulating this process remain to be studied. Here, we demonstrate that Smith-like (LSM) family member 14B (LSM14B) regulates oocyte maturation, and the loss of LSM14B in mouse ovaries leads to abnormal oocyte MII arrest and female infertility. Next, we find the aberrant transcriptional activation, indicated by abnormal non-surrounded nucleolus and surrounded nucleolus oocyte proportions, and abnormal chromosome assembly and segregation in Lsm14b-deficient mouse oocytes. The global transcriptome analysis suggests that many transcripts involved in cytoplasmic processing body (P-body) function are altered in Lsm14b-deficient mouse oocytes. Deletion of Lsm14b results in the expression and/or localization changes of P-body components (such as LSM14A, DCP1A, and 4E-T). Notably, DDX6, a key component of the P-body, is downregulated and accumulates in the nuclei in Lsm14b-deficient mouse oocytes. Taken together, our data suggest that LSM14B links mouse oocyte maturation to female fertility through the regulation of the P-body.


Assuntos
Oogênese , Corpos de Processamento , Animais , Feminino , Camundongos , Oócitos/metabolismo , Oogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...